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Abstract: We developed a numerical method to solve a general fifth order two
point bvp using Galerkin method with cubic B-splines. The basis functions are
modified into a new set of basis functions which vanish on the all most all boundary
conditions. To test the efficiency of the proposed method, we applied this scheme
on several fifth order linear and nonlinear bvp’s. The solution of a non-linear
boundary value problem has been obtained by quasilinearization technique. We
found numerical results were closed to the exact solutions available in the literature.
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1. Introduction and Preliminaries
We consider a general fifth order linear bvp

a0(x)y(5)(x)+a1(x)y(4)(x)+a2(x)y
′′′

(x)+a3(x)y
′′
(x)+a4(x)y

′
(x)+a5(x)y(x) = b(x),

c < x < d (1)

subject to boundary conditions

y(c) = A0, y(d) = C0, y
′
(c) = A1, y

′
(d) = C1, y

′′
(c) = A2 (2)
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where A′is, B
′
is are finite real constants and ai(x)′s, b(x), i = 0, 1, ..., 5 are all

continuous functions over [c, d].

Generally, these kinds of fifth order bvp’s arise frequently in the mathematical
modeling of viscoelastic fluids and other branches of mathematics, physical and
engineering sciences [1, 2]. The detail of existence and uniqueness of the solution
for these problems can be found in the monograph namely Agarwal [3]. Solving
such boundary value problems analytically is not always possible and it is only
possible in very few cases only. The numerical study of these equations has been
challenging by their nature and is in growing interest to researchers. So, many
numerical methods have been developed over the years to approximate the solu-
tion for these types of boundary value problems. Some of the already established
methods are Finite Difference Method(FDM), Homotopy Analysis Method(HAM),
Optimal HAM, Collocation method, VPM, VIM, HPM, Decomposition method,
Sinc Galerkin method, Adomain decomposition method etc.

We mainly focus on the solving fifth order bvp’s by using spline functions tech-
niques. Spectral Galerkin and Spectral Collocation methods were developed by
Davies A. R et al. [1, 2] to solve fifth order bvp, A special type of fifth order bvp’s
solved by Caglar et al. and Kasi Viswanadham et al. [4, 5] used spline technique
Collocation methods with B-splines sixth degree polynomials respectively. The
quintic B-spline Galerkin method used to solve special case of fifth order bvp’s by
Kasi Viswanadham and Murali Krishna [6], Siddiqi et al. and Kasi Viswanadham,
Showri Raju [7, 8, 9] developed spline technique with quartic polynomial and cu-
bic, quartic B-spline Collocation methods respectively to solve fifth order boundary
value problems. Feng-Gong Lang and Xiao-Ping Xu [10, 11] developed the Collo-
cation method based on FDM to solve a special case of fifth order bvp’s by using
cubic and quartic B-splines. This motivated us to solve a general fifth order bvp
by Galerkin method with cubic B-splines.

2. Justification for using Galerkin Method

In the Galerkin method, the residual of approximation is made orthogonal to the
basis functions. When we use the Galerkin method, a weak form of approximation
solution for a given differential equation exists and is unique under appropriate con-
ditions [12, 13] irrespective of properties of a given differential operator. Further,
a weak solution also tends to a classical solution of a given differential equation,
provided sufficient attention is given to boundary conditions [14]. That means the
basis functions should vanish on the boundary where the Dirichlet type of bound-
ary conditions are prescribed. Hence in this paper we employed the use of Galerkin
method with cubic B-splines as basis functions to approximate the solution of fifth
order bvp’s.
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3. Description of the Method

Definition of cubic B-splines. The cubic B-splines Bi(x)′s are defined by

Bi(x) =


i+2∑

r=i−2

(xr − x)3+
π′(xr)

, for x ∈ [xi−2, xi+2]

0, otherwise

where {B−1(x), B0(x), B1(x), . . ., Bn−1(x), Bn(x), Bn+1(x)} forms a basis for the
space S3(π) of a cubic polynomial splines. More details available in the monographs
[15, 16]. Schoenberg [16] has proved that cubic B-splines are the unique nonzero
splines of smallest compact support [x−3, xn+3]. The approximate solution y(x) of
(1) is defined as

y(x) =
n+1∑
j=−1

αjBj(x) (3)

where αj’s are the nodal parameters. Since we are approximating the fifth order
bvp by cubic B-spline polynomial, we redefine the basis functions into a new set of
basis functions which vanish on Dirichlet and Neumann boundary conditions. The
procedure for redefining the basis functions is as follows.
Using the definition of cubic B-splines and the boundary conditions of (2), we get
the approximate the boundary conditions as

A0 = y(c) = y(x0) = α−1B−1(x0) + α0B0(x0) + α1B1(x0) (4)

C0 = y(d) = y(xn) = αn−1Bn−1(xn) + αnBn(xn) + αn+1Bn+1(xn) (5)

A1 = y
′
(c) = y

′
(x0) = α−1B

′

−1(x0) + α0B
′

0(x0) + α1B
′

1(x0) (6)

C1 = y
′
(d) = y

′
(xn) = αn−1B

′

n−1(xn) + αnB
′

n(xn) + αn+1B
′

n+1(xn) (7)

Eliminating α0, α1, αn and αn+1 from the (4) - (7), we get approximation y(x) as

y(x) = w(x) +
n−1∑
j=1

αjB̃j(x) (8)

where

w(x) = w1(x) +
A1 − w

′
1(x0)

P
′
0(x0)

P0(x) +
C1 − w

′
1(xn)

P ′
n(xn)

Pn(x)
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w1(x) =
A0

B−1(x0)
B−1(x) +

C0

Bn+1(xn)
Bn+1(x)

B̃j(x) =


Pj(x)−

P
′
j (x0)

P
′
0(x0)

P0(x), j = 1

Pj(x), j = 2, 3, . . . , n− 2

Pj(x)−
P

′
j (xn)

P ′
n(xn)

Pn(x), j = n− 1.

Pj(x) =


Bj(x)− Bj(x0)

B−1(x0)
B−1(x), j = 0, 1

Bj(x), j = 2, 3, . . . , n− 2

Bj(x)− Bj(xn)

Bn+1(xn)
Bn+1(x), j = n− 1, n.

Applying the Galerkin method to (1) with the modified basis functions{ B̃j(x), j =
1, 2, . . . , n− 1}, we get∫ xn

x0

[
a0(x)y(5)(x) + a1(x)y(4)(x) + a2(x)y

′′′
(x) + a3(x)y

′′
(x) + a4(x)y

′
(x)

+ a5(x)y(x)
]
B̃i(x) dx =

∫ xn

x0

b(x)B̃i(x)dx for i = 1, 2, . . . , n− 1. (9)

Integrating by parts the first three terms on the left hand side of (9) and after
applying the boundary conditions prescribed in (2), we obtained the system of
linear equations and these were arranged in the matrix form as

Aα = B (10)

where A = [aij];

aij =

∫ xn

x0

{[
− d3

dx3

[
a0(x)B̃i(x)

]
− d

dx

[
a2(x)B̃i(x)

]
+ a3(x)B̃i(x)

]
B̃

′′

j (x)

− d

dx

[
a1(x)B̃i(x)

]
B̃

′′′

j (x) + a4(x)B̃i(x)B̃
′

j(x) + a5(x)B̃i(x)B̃j(x)
}
dx

+

[
d2

dx2

[
a0(x)B̃i(x)

]
B̃

′′

j (x)

]
xn

for i = 1, 2, . . . , n− 1, j = 1, 2, . . . , n− 1 (11)
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B = [bi];

bi =

∫ xn

x0

{
b(x)B̃i(x) +

[
d3

dx3

[
a0(x)B̃i(x)

]
+

d

dx

[
a2(x)B̃i(x)

]
− a3(x)B̃i(x)

]
w

′′
(x)

+
d

dx

[
a1(x)B̃i(x)

]
w

′′′
(x)− a4(x)B̃i(x)w

′
(x)− a5(x)B̃i(x)w(x)

}
dx

+ A2
d2

dx2

[
a0(x)B̃i(x)

]∣∣∣∣∣
x0

−
[
d2

dx2

[
a0(x)B̃i(x)

]
w

′′
(x)

]
xn

for i = 1, 2, . . . , n− 1

(12)

and α = [α1 α2 . . . αn−1]
T and this α has been obtained from the solving seven

diagonal band system Aα = B using a band matrix solution package.

4. Numerical Results
To demonstrate the applicability of the proposed numerical method we con-

sider a linear and a nonlinear fifth order bvp’s. We compare the numerical results
which are obtained by the proposed method with the exact solutions and these are
presented in the table form. We used uniform norm to measure the error in each
example and we consider modest step size h = 0.1.
Example 1. Consider the linear bvp

y(5) + xy = (1− x) cosx− 5 sinx+ x sinx− x2 sinx, 0 < x < 1 (13)

subject to y(0) = 0, y(1) = 0, y
′
(0) = 1, y

′
(1) = − sin 1, y

′′
(0) = −2.

The exact solution for the above problem is y = (1 − x) sinx. The obtained nu-
merical results for this problem are given in Table 1. The error obtained by the
proposed method is 4.202127× 10−6.

Example 2. Consider the nonlinear bvp

y(5) + [y
′
]2e4y − 4y2ey

′′

+ e2x[y
′′′

]2 = 32e−2x, 0 < x < 1 (14)

subject to y(0) = 1, y(1) = e−2, y
′
(0) = −2, y

′
(1) = −2e−2, y

′′
(0) = 4.

The exact solution for the above problem is y = e−2x . The nonlinear boundary
value problem (14) is converted into a sequence of linear boundary value problems
generated by quasilinearization technique [17] as

y
(5)
(n+1) + (2e2xy

′′′

(n)) y
′′′

(n+1)− (4[y(n)]
2ey

′′
(n)) y

′′

(n+1) + (2y
′

(n)e
4y(n)) y

′

(n+1) + (4[y
′

(n)]
2e4y(n)

−8y(n)e
y
′′
(n)) y(n+1) = 32e−2x+e4y(n) [y

′

(n)]
2−4[y(n)]

2 ey
′′
(n) +e2x[y

′′′

(n)]
2+4y(n)[y

′

(n)]
2 e4y(n)

− 4[y(n)]
2y

′′

(n) e
y
′′
(n) , n = 0, 1, 2, ... (15)
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y(n+1)(0) = 1, y(n+1)(1) = e−2, y
′

(n+1)(0) = −2, y
′

(n+1)(1) = −2e−2, y
′′

(n+1)(0) = 4.

The proposed method is applied to the sequence of linear problems (15). The
obtained numerical results for this problem are presented in Table 2. The error
obtained by the proposed method is 7.694364× 10−4.

Numerical results for Example 1 Numerical results for Example 2
0.1 8.985008E-02 3.121793E-06
0.2 1.589355E-01 3.129244E-07
0.3 2.068641E-01 3.665686E-06
0.4 2.336510E-01 1.028180E-06
0.5 2.397128E-01 4.202127E-06
0.6 2.258570E-01 1.206994E-06
0.7 1.932653E-01 4.127622E-06
0.8 1.434712E-01 7.748604E-07
0.9 7.833266E-02 3.330410E-06

0.1 8.187308E-01 3.808737E-05
0.2 6.703200E-01 2.675056E-04
0.3 5.488116E-01 4.627109E-04
0.4 4.493290E-01 4.867315E-04
0.5 3.678795E-01 1.728833E-04
0.6 3.011942E-01 3.091395E-04
0.7 2.465970E-01 7.694364E-04
0.8 2.018965E-01 8.221567E-04
0.9 1.652989E-01 4.288703E-04

5. Conclusion
In this paper we have developed the numerical scheme which involves a finite

element Galerkin approach with cubic B-splines as basis functions to solve a general
fifth order bvp. From these numerical results we conclude that these numerical
results are close to the exact solutions available in the literature. The objective of
this paper is to present a simple and efficient method to solve a general fifth order
boundary value problem.
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